Proyecto LEG: Las Aulas de Competencia

Rafael Ispizua Anduiza¹, Borja Ullibarri Iglesias²

¹ Ing. Industrial, Fundación Unitec, Colón de Larreategui, 26, Bilbao, ria@ikertia.net

Resumen

En esta comunicación se resumen los principios básicos de actuación sobre los que se desarrolla el modelo de Aula de Competencia como proyecto de colaboración entre la universidad, las empresas y los organismos intermedios de innovación. Teniendo en cuenta que la gestión del conocimiento será en los próximos años uno de los factores clave en la competitividad de las empresas, desarrollamos un modelo que tiene una importancia clave para el desarrollo del capital humano, así como para el sector empresarial y el resto de Instituciones y Organismos participantes. No se limita a acuerdos de colaboración puntuales sino que se orienta al desarrollo de un espacio lógico (iniciativas, programa de actividades, etc..) compartido que abarque las áreas de desarrollo de mayor interés para las organizaciones implicadas. La creación de un modelo de Aula de Competencia flexible y adaptado a las necesidades del entorno, y que promueva el desarrollo empresarial y social es el objetivo último del presente proyecto.

Palabras clave: Formación, RRHH, Universidad-Empresa, Aulas, Competencia

1. Introducción

Desde nuestro convencimiento de que la gestión del conocimiento será en los próximos años (si no lo es ya) el factor de mayor impacto sobre la competitividad de las empresas presentamos los principios básicos de actuación sobre los que, a nuestro criterio, desarrollar el modelo de Aula de Competencia como proyecto de colaboración entre la universidad, las empresas y los organismos intermedios de innovación.

Dicho convencimiento, contrastado en numerosos foros científico-tecnológicos, es de profundo calado para todas las Organizaciones comprometidas con la promoción y desarrollo cultural, social y económico, representando a su vez una importante oportunidad competitiva para aquellas que entiendan y asuman los compromisos derivados de una gestión del conocimiento coherente con su proyecto empresarial.

En estas condiciones, parece obvio explicar la importancia del capital humano como base de desarrollo del proyecto que presentamos, así como el alcance del mismo tanto para el sector empresarial como para el resto de Instituciones y Organismos que participan en el proyecto.

Por una parte, el establecimiento del capital humano como base de desarrollo (consecuencia de una estrategia de gestión del conocimiento) implica un profundo cambio cultural en las Organizaciones al integrar los RRHH en la Estrategia del negocio y la Gestión de los procesos necesitándose nuevos modelos de gestión por competencias, nuevos sistemas de captación/formación, etc.

² Ldo. en CC. Económicas y Empresariales. Fundación Unitec, Colón de Larreategui, 26, Bilbao, bui@ikertia.net

Por otra, el proyecto contempla elementos de integración en el sistema Ciencia-Tecnología-Empresa CTE donde entran en juego entornos con una "cultura" de gestión muy diversa y que, hasta la fecha, han desarrollado unos vínculos de cooperación todavía muy débiles.

Nos referimos (sin concretar las entidades que pertenecen a cada uno de ellos ya que las fronteras entre ellas no son claras) al entorno del conocimiento donde términos como precio, plazo, competitividad, etc. no son el referente en los modelos de actuación y al entorno empresarial donde las Organizaciones difícilmente pueden escapar a la presión que dichos términos ejercen.

Sin embargo, la sentencia está dictada y la condena a entenderse entre ellos es evidente desde una amplia perspectiva de la gestión del conocimiento como el esfuerzo de una organización por **conseguir** (vigilancia, prospectiva, desarrollo), **organizar** (clasificar, distribuir), **aplicar** (compartir, procesar) y **transmitir** los conocimientos entre todos los empleados y colaboradores.

Por ello, dicho entendimiento no debe limitarse a acuerdos de colaboración puntuales sino que debe orientarse al desarrollo de un espacio lógico (iniciativas, programa de actividades, etc..) compartido que abarque todas las áreas de desarrollo que se contemplen en el Plan Nacional de I+D+i 2004-2007.

2. Objetivos

El objetivo último del presente proyecto es la creación de un modelo de Aula de Competencia que promueva y facilite el desarrollo social y empresarial de nuestro entorno. Se ha determinado inicialmente el desarrollo de tres Aulas de Competencia:

- > Escuela de Ingenieros de Bilbao (de carácter técnico),
- > Universidad de Deusto (de carácter multidisciplinar, TIC, socioeconomía, derecho,...) y
- > Colegio de Ingenieros de Bilbao.

La iniciativa se contempla desde una amplia perspectiva de la innovación empresarial de forma que se establecen como objetivos estratégicos más importantes los siguientes .

- → Aumento del nivel Ciencia-Tecnología: El proyecto contribuirá a la formación e incorporación de tecnólogos a las empresas que muestren su vocación innovadora participando de la iniciativa propuesta. Asimismo, Se desarrollarán líneas de actuación en áreas como socioeconomía, sociología, etc... facilitando la formación de equipos multidisciplinares capaces de dar respuesta a los problemas y desafíos mas complejos de la una sociedad globalizada.
- → Aumento de la competitividad y carácter innovador de las empresas: Dicho objetivo se conseguirá mediante una mayor presencia de contenidos tecnológicos en productos y servicios y una mejor interacción de las PYMEs con la política de I+D+i del sector público.
- → Mejora del aprovechamiento de la I+D+i por las empresas: El proyecto se desarrollará con una clara vocación de I+D aplicado de manera que sus resultados sean fácilmente aprovechados por las empresas y respondan además a sus necesidades en dicha materia.

→ Favorecer el proceso de internacionalización del sistema C-T-E: Se favorecerá la incorporación de las empresas a programas de I+D en cooperación con empresas e Instituciones de otros países mediante la firma de acuerdos o convenios con dichos objetivos.

Además de estos objetivos estratégicos coherentes con la política establecida en el Plan Nacional de I+D+i 2004-2007 existen otra serie de objetivos de carácter operativo que son, además, los requisitos de mercado en los que se apoya la presente iniciativa.

Dichos objetivos operativos se especifican para cada una de las Aulas de Competencia y se controlan mediante un sistema de indicadores que incluyen calidad de formación, impacto de la I+D, actividades de cooperación, internacionalización, etc.

3. Política

La política de actuación debe ser coherente con los intereses y necesidades empresariales y con la capacidad y flexibilidad del sistema Ciencia-Tecnología para integrar soluciones de cooperación empresarial.

No obstante dichos requisitos no deben privar al proyecto de la ambición de conseguir un modelo global (por tecnologías, áreas de conocimiento, recursos y ámbito geográfico) de actuación en el ámbito de la I+D+i.

De acuerdo con ello, la estrategia de actuación que proponemos se desarrolla sobre las siguientes bases :

- -- Liderazgo
- -- Gestión el conocimiento
- -- Globalización / Internacionalización
- -- Cooperación
- -- Marco Institucional de I+D+i
- -- Normalización y Certificación

Cuya justificación y descripción se han expuesto anteriormente.

4. Modelo de actuación

Una vez descrito el marco en el que consideramos debiera desarrollarse el proyecto de colaboración se justifica la solución que se propone.

En principio, dentro del ámbito de la I+D+i existen dos líneas de cooperación independientes como proyectos de I+D propiamente dichos y formación. Evidentemente tanto en una línea como en otra la intensidad de dicha cooperación dependerá de los recursos disponibles y de los objetivos establecidos.

Pues bien, en caso de conseguir que la cooperación en ambas materias sea coherente y equilibrada habremos conseguido un espacio lógico de desarrollo que denominamos Aula de Empresa (se adjunta un modelo de convenio de estas características en el que se evidencian los objetivos y estrategias de dicho modelo).

En estas condiciones estaríamos ya ante una estrategia de cooperación bien articulada pero carente, a nuestro criterio, de un compromiso cierto con la competitividad tanto del propio proyecto como de las empresas que financian las actividades.

Por ello, consideramos indispensable establecer igualmente vínculos de cooperación en la gestión del Plan de I+D+i empresarial con objeto de dotar al proyecto de capacidad y conocimiento suficiente para asumir el compromiso anteriormente mencionado (Aula de Competencia).

En estas condiciones habremos conseguido un **Aula de Competencia** como **espacio lógico compartido** cuya viabilidad y destino dependerán en gran parte de su propia capacidad de desarrollo.

5. El Aula de Competencia: Un modelo flexible adaptado al entorno

Las aulas de competencia promovidas y gestionadas por **Fundación Unitec** están concebidas desde diferentes perspectivas de funcionamiento.

Por una parte, el **Ormazabal Work Place (OWP)** responde a un compromiso de cooperación científica, técnica y formativa entre la Escuela de Ingeniería de Bilbao y el Grupo Ormazabal. Es decir, es un Aula al servicio de un grupo industrial.

Por otra parte, el **Aula de competencia Unitec (ULT)** está dedicada al desarrollo de una tecnología específica como es el PLM mediante un acuerdo de cooperación con la empresa fabricante Unigraphics - UGS.

Por último, en la Universidad de Deusto se ha promovido un **Aula multidisciplinar (AUD)** concebida para desarrollar metodologías y pautas de aplicación en los cada vez más complejos procesos empresariales y sociales en los que intervienen diferentes áreas de conocimiento.

Como muestra descriptiva de estos enunciados se aporta la siguiente documentación.

5.1. Aula de competencia Ormazabal Work Place (OWP)

Indicadores de gestión establecidos. El compromiso empresarial exige unas pautas de actuación que permitan evaluar con precisión la rentabilidad de la iniciativa.

Tabla 1. Indicadores OWP

Área de Selección / Formación

Concepto : Selección	Criterio	Item	Indicador	Objetivo 2004	Resultado 2004
Capacidad de difusión entre los alumnos y base de datos de curriculums	N° de curriculums	S1	S1/S4 = 20%	40	60
Estimación del volumen de actividad	Nº de becarios	S2		6	6
Estimación de la calidad de selección - formación	Nº de contratos	S3	S3/S2 = 50%	3	2
Estimación del universo de actuación	Nº de alumnos promoción (5º)	S4	200		
Estimación del atractivo	Nº de rechazos	S5		1	1

Concepto : Formación	Criterio	Item	Indicador	Objetivo 2002	Resultado 2002
Evaluación del rendimiento	Metodología GOSA	F1			
Estimación de la calidad de la formación – Plan de formación	Nota de la asignatura y del PFC	F2		Notable-	Notable- 8
Estimación de la capacidad de internacionalización	N° de becarios en programas internacionales	F3	F3/S2 = 20%	1,6	0
Estimación económica – Valor de mercado	F (S3,F2)	RH	RH/G1 = 70%		

Un alumno contratado justifica su inversión en % sobre el total del presupuesto

Area de I+D+I

Concepto	Criterio	Item	Indicador	Objetivo 2002	Resultado 2002
Valoración técnica	Grupo Ormazabal	I1			
Capacidad de respuesta a la demanda	Nº implantaciones	I2	I2/I3 = 50%	3	3
Volumen de actividad	Nº de proyectos	13		5	5
Estimación económica – Valor de mercado	F(I1,I2, PRECIO MERCADO)	ID	ID/G1 = 30%		

Área de Gestión

Concepto	Criterio	Item	Indicador	Objetivo 2002	Resultado 2002
Volumen de recursos Grupo Ormazabal	Pts	G1		30.000	30.000
Capacidad de difusión : jornadas, congresos, publicaciones,	Nº de actuaciones	G2		1	1
Capacidad de cooperación : Acuerdos Institucionales, empresariales,.	Nº de Centros - Instituciones	G3		1	-
Rentabilidad total del proyecto OWP	A determinar	G4			
Capacidad de captación de recursos externos	Pts	GE	GE/G1 = 1	30.000	30.000

Modelo de evaluación de los alumnos. Uno de los objetivos prioritarios de Aula es la incorporación al grupo industrial de jóvenes ingenieros por lo que su evaluación y seguimiento es un factor estratégico dentro del proyecto.

Tabla 2. Ficha de Evaluación y Seguimiento

DATOS PEI	RSONALES		Xxxx xxxxxx			
IDENTIFIC PUESTO	ACIÓN		APLICACIÓN DEL VACIO			
Fecha Ent.	02-12-03		30-03-04			
Desviaciones fundamentales y logi		logr	os	Acciones de mejora		
Evaluado			Evaluador RI / 30-03-04			

I : Indicador P : Ponderación del índice 1-3 V : Valor asignado 1-5

ASPECTOS	I	CRITERIOS	P	V : Valoraciones					
PROFESIONALES	I1		1						
Dinámica de gestión	I11	Planificación de tareas	3		2				
	I12	Tratamiento adecuado de la información	1		2				
Ejecutivo	I13	Iniciativa – Toma decisiones	3		2				
	I14	Innovación / Creatividad	3		2				
	I15	Actuación bajo presión	2		2				
	I16	Conocimiento	3		2				
PERSONALES	12		1						
	I21	Responsabilidad	1		2				
	122	Actitud positiva	1		4				
	123	Flexibilidad ante lo imprevisto	1		3				
	I24	Capacidad crítica - aprendizaje	2		4				
	125	Metodológico	2		3				
RELACIONALES	13		1						
	I31	Capacidad de comunicación	2		2				
	132	Liderazgo	2		2				
	I33	Trabajo en equipo	2		3				
	I34	Negociación / Persuasión	1		2				
				Е	1	2	3	4	S
					1	<u> </u>	I	ı I	
		TOTAL							

5.2. Aula de competencia Unitec (ULT)

Programa Master PLM. El principal objetivo de dicho Aula es formar expertos en tecnología PLM e incorporarlos a las empresas participantes en el master.

Tabla 3. Curso Superior de Ingenieria y PLM (CAD/CAM/CAE/PDM) 2004-2005

Ficha técnica del curso				
Número de alumnos :	15			
Compromiso de contratación (60%):	9 alumnos			
Formato : 6 h/día entre 8.00 – 14.00 h.	Aprox. 125 h/mes			
Fase teórica :	3 meses (375 h)			
Fase práctica :	5 meses (625 h)			
-				
En cualquier momento los alumnos pueden ser contratados por las empresas participantes				

	Organizadores				
	n UNITEC, EDS, DAT, Departamento de Expresión Gráfica ectos de Ingeniería de la UPV-EHU				
Contacto					
PERSONAS DE CONTAC TELEFONO: 94	CTO (Fundación Unitec): Rafael Ispizua y Javier Ruiz. 423 36 18 e-mail: jrr@ikertia.net				

La globalización de la economía provoca que la competencia internacional aumente a pasos agigantados. En este marco las empresas deben adaptarse constantemente a nuevas situaciones optimizando sus metodos productivos para poder servir a sus clientes en unos plazos que se acortan día a día, con productos de mayor calidad y flexibilidad. Esto obliga a una mejora continua que afecta a todo el proceso desde los métodos de diseño e ingeniería, hasta la fabricación. La consecución de dichos objetivos pasa por la incorporación de tecnologías CAD/CAM/CAE/PDM en el ciclo de vida del producto (PLM).

Fruto de lo anterior existe una gran demanda de profesionales (ingenieros superiores y técnicos) formados en técnicas CAD/CAM/CAE y PDM. Para satisfacer esta demanda no bastan los estudios universitarios actuales y es necesario completar la formación con conocimientos específicos en las tecnologías de ingeniería y fabricación integradas por ordenador.

Por esta razón se considera fundamental un curso de alto nivel con un marcado enfoque práctico, de forma que facilite al mercado profesional ingenieros con un profundo dominio de herramientas CAD/CAM/CAE y sus tecnologías afines, especialmente PDM (Gestión de Datos del Producto). Asimismo, se considera conveniente abrir dicha formación de postgrado a los profesionales de la industria, para la actualización de sus conocimientos.

Los organizadores del curso somos conscientes de que en el mercado actual el avance de las tecnologías es vertiginoso y no siempre es posible encontrar profesionales formados en los últimos adelantos. Este curso se propone como objetivo el ofrecer a las empresas del entorno ingenieros que conozcan las nuevas herramientas de diseño y de gestión de vida de producto. Para ello Fundación Unitec (Organismo Intermedio de Innovación Tecnológica), DAT empresa experta en formación CAD/CAM/CAE y la Escuela Superior de Ingenieros de Bilbao han llegado a un acuerdo de cooperación con el líder del sector EDS que colabora aportando sus tecnologías (Unigraphics NX, etc.) y sus técnicos.

La organización del curso firmará acuerdos con las empresas que quieran beneficiarse de las ventajas que ofrece este curso para ellas:

- → Selección de tecnólogos en las universidades
- → Formación específica en la tecnología de EDS (CAD/CAM/CAE/PDM) (375 h)
- → Formación práctica en las empresas con el desarrollo de un proyecto (625 h)
- → El alumno se incorpora con el equipo y licencia industrial propia del master
- → Posibilidad de contratar al alumno en cualquier momento.
- → Posibilidad de subcontratación de servicios hasta un total de 900 h (en caso de que no quieran incorporar alumnos a plantilla)
- → Posibilidad de participar en programa Torres Quevedo del Ministerio de Educación y Ciencia.

El curso va dirigido a titulados recientes de ingeniería superior e ingeniería técnica que quieran adquirir conocimientos en las herramientas más avanzadas de la ingeniería mecánica. Los alumnos obtendrán una visión de conjunto de la mayoría de las utilidades que se usan en la Industria para la Gestión del Ciclo de Vida Completo de un Producto.

Los participantes partirán desde el diseño de Concepto, y adquirirán amplios conocimientos de diseño Mecánico Industrial, diseño de Utillajes, Análisis de Elementos Finitos, Fabricación de Utillajes y Producto, así como la Gestión en una única Base de Datos que controla cambios de Variantes, Flujos de trabajo, Configuración de Producto, Gestión de Producción y Mantenimiento de Producto.

Duración del curso es de 8 meses.

El reparto de horas es el siguiente:

- -- Fase teórica (375 horas): hasta Enero de 2005. Se evaluaran tanto las aptitudes tecnicas como las humanas mediante una metodologia propia.
- -- Fase de formación en centro de trabajo (625horas): en la que el alumno va a trabajar en un proyecto real tutelado por profesores del curso y por técnicos de las empresas participantes.

Medios Materiales

- > Sala de Televisión de la Escuela Superior de Ingenieros de Bilbao y Salon de actos del Colegio Oficial de Ingenieros de Bizkaia para las presentaciones al exterior.
- > Centro de Competencia UNITEC.
- > Aula de CAD del departamento de Expresión Gráfica y Proyectos de Ingeniería de la Escuela Superior de Ingenieros de Bilbao.
- > Software UNIGRAPHICS NX series y TEAMCENTER.
- > Taller de ingenieria mecanica de la Escuela Superior de Ingenieros de Bilbao.

Medios Humanos

- a.- Profesores de los siguientes departamentos de la ESI de Bilbao:
 - ·Dpto. Expresión Gráfica y Proyectos de Ingeniería
 - ·Dpto. Ingeniería Mecánica
- b.- Profesionales de la firma DAT.
- c.- Profesionales de la firma EDS.
- d.- Conferencias invitadas de profesionales de empresas.

Tabla 4. Contenidos del curso

AREA DE CONOCIMIENTO	MODULOS	DESCRIPCION	N° DE HORAS	TECNOLOGIA UTILIZADA	
	CAD I	BASICO (SOLIDOS + PLANO + FAMILIAS PIEZAS)			
DISEÑO	CAD II	AVANZADO (MONTAJES)	100	UNIGRAPHICS NX2	
	CAD III	SUPERFICIES DISEÑO CONCEPTUAL DE PRODUCTO			
PROCESOS		DISEÑO Y CONSTRUCCION DE MOLDES Y ESTAMPAS	40	UNIGRAPHICS NX2	
CAM	CAM I	CONTROL NUMERICO Y GENERACION DE TRAYECTORIAS MEDIANTE CAM	40	UNIGRAPHICS NX2	
CAM	CAM II	MECANIZADO POR ARRANQUE DE VIRUTA Y METROLOGIA DIMENSIONAL.	40	UNIORAPHICS NAZ	
SIMULACION	CAE	ANALISIS CON ELEMENTOS FINITOS	- 60	UNIGRAPHICS NX2	
SIMULACION	CAE	SIMULACION DINAMICA DE SÓLIDOS	00	UNIGRAPHICS NA2	
GESTION DE CICLO DE VIDA DE PRODUCTO	PDM	GESTION DE DATOS DE PROYECTO	40	TEAMCENTER ENGINEERING + UNIGRAPHICS NX2	
DISEÑO EN BASE A REGLAS DE INGENIERIA	UNIGRAPHIC S NX2 AVANZADO	Diseño en Base a Reglas de Ingeniería. I+D. Asistente Knowledege Fusion.	20	PROGRAMACION UNIGRAPHICS NX2	
MEDIO AMBIENTE	AMBIENTEV		20	MEDIO AMBIENTE	

Figura 3. Vista de las instalaciones en el Centro de Competencia Unitec

5.3. Aula de competencia en la Universidad de Deusto (AUD)

Definición proyecto. Se adjunta a modo de ejemplo un proyecto tipo en el que se evidencia la importancia de la cooperación entre especialistas de diferentes áreas de conocimiento ingeniería, derecho, economía, etc.

Tabla 5. Definición de proyecto Datos del provecto AMK-IP-0401 Código POLITICA FISCAL Y CERTIFICACION DE I+D+I Nombre Responsable ESIDE INGENIERIA + DERECHO (Ana Lago + Ana Isabel Herrán) GI + MAKUA Responsable United Alumnos 1 + 101-01-04 Fin Previsto 30-09-04 Fecha Inicio Fin Real Objetivos del proyecto Conocer la situación y plantear soluciones dentro del ERA (European Research Area) respecto de la política fiscal y certificación de actividades de I+D+I Fases del proyecto Recoger información de diversos países y regiones Conocer sus procedimientos operativos Definir y evaluar la necesidad de certificaión de las actividades de I+D+I Propuesta de solución en Bizkaia, País Vasco,.... Estudio de antecedentes, jurisprudencia, ... La certificación aspectos legales Recursos (Herramientas software, hardware) 2 puestos de trabajo con Internet, bases de datos,.... Documentación Asociada Leyes fiscales - manual de Frascati - Sistemas de Innovación Nacionales - Normas UNE 166000 Modificaciones Descripción Firma Responsable Fecha 29-12-03 RI + JSIncorporar formación de alumnos en gestión de I+D+I