
 

1869 
 

3rd International Conference on Industrial Engineering and Industrial Management  
XIII Congreso de Ingeniería de Organización 
Barcelona-Terrassa, September 2nd-4th 2009 

Load demand forecasting from one day to several months ahead based on 
State Space models. An empirical evaluation 

Juan R. Trapero Arenas1 
1 Dpt. Management Science. Management School. Lancaster University. LA1 4YX , Lancaster (UK).  
j.traperoarenas@lancaster.ac.uk. 

Keywords: load demand forecasting, Unobserved Component Models, Fixed Interval 
Smoothing, multi-rate forecasting. 

1. Introduction 
Deregulation processes during the last two decades across many developed economies have 
motivated the need for more accurate forecasting tools of electricity markets. Load demand 
prediction is important for the development of any model for electric power system 
planning. Medium term forecasts (one day to several months) are typically used to schedule 
fuel purchases reducing financial risks and for maintenance operations, Yalcinoz and 
Eminoglu (2005) *. 

Most of the literature on load demand forecasting refers to short-term forecasting, up to one 
day or one week ahead at most. In that context it is generally acknowledged the inherent 
modelling difficulties, like high frequency observation load data (usually hourly, but often 
half-hourly); the presence of multiplicity of periodic behaviour superimposed (strong daily 
and weekly patterns); atypical effects (holidays, public holidays, television events, etc.); 
non-linear relations with other variables, mainly weather variables; etc. This complexity is 
reflected in the high number of methods applied to the problem, ranging from classical 
methods (like regression, Exponential Smoothing, ARIMA, optimal Kalman filtering, etc.) 
to some considered more modern, like Artificial Neural Networks, which have become 
almost the rule, overshadowing other possibilities. Some references are Taylor et al. (2006) 
and Pedregal and Trapero (2007). 

It is obvious that the difficulties in forecasting load demand for long (more than a year 
ahead) or mid-term (one day to several months) are much more important than for short-
term, and this is reflected in a much scarcer amount of literture, Amjady and Keynia (2008). 

The references on long or mid-term forecasting are very heterogeneous in many respects, 
but two are most important from the point of view of this paper. Firstly, the spread of 
methods implemented is considerable, as it is expected when the issue addressed is rather 
complex. Secondly, and most importantly, the nature of the data used, mainly their 
sampling interval, is very different from some references to others.  

The aim of this paper is developing a general multi-rate methodology in order to find 
forecasts as accurate as possible for a mid-term horizon (up to twelve weeks in the 
examples below, about three months) for data sampled at an hourly rate. This hourly 
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sampling interval then restricts considerably the number of similar applications found in the 
literature. The forecasting horizon may be extended as long as it is sensible to do so, 
depending on the amount and quality of the data, but it is not a constraint imposed by the 
method. In addition, this work extends the short-term forecasting technique presented in 
Pedregal and Trapero (2007) for a mid/long term version applied to load demand data. 

The outline of the paper is as follows: section 2 presents the general UC framework in 
which our models are set up and discusses the particular model for any of the components 
involved in the case of load demand; section 3 presents the particular multi-rate approach 
proposed; section 4 exposes a collection of empirical findings; and section 5 sums up and 
extracts the most important conclusions. 

2. Unobserved Components models 
Unobserved Component models (UC) are a class of stochastic processes that has proven 
very useful in a wide range of scientific areas, Young et al. (1999). There are some specific 
applications to forecasting electricity markets, Pedregal and Trapero (2007); but in general 
publications are scarce, especially when compared to other approaches. 

In a univariate UC model, the signals are assumed to be the addition of several components, 
each one with its own physical interpretation. Since the components are not directly 
observable, there are many ways of decomposing the time series. To remove this ambiguity, 
assumptions have to be made about the statistical nature of the components. In the case of a 
monthly time series with a seasonal component, a typical model is 

 ttttt eSCTy ��� (1i) 

where yt  is the observed time series; Tt  is a trend or low frequency component; tC  is a 
possible cyclical component with a period longer than one year; tS  is the seasonal 
component with a period of 12 observations/months per year; and et  is a serially 
uncorrelated white noise (with constant variance V 2 ).  

The model ought to be more complicated for hourly electricity demand; one fairly general 
formulation is  

 tttttt eAWDTy ���� (1ii) 

where t  is now measured in hours; Dt  is a daily periodic component; Wt  is a weekly 
component; and At  is an annual component. The annual cycle or seasonality At  is of 
paramount importance in the present context, when forecasts for mid-term at an hourly 
interval are required. When the forecasting horizon is no longer than one week, the term At  
is usually dropped from any model, but for longer horizons this term is essential to get 
sensible forecasts, as it will be shown later on.  

A different way of writing equations (1) is given in equation (2), where ¦
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The only difference between both options is that different values for P  are necessary in 
order to reach an appropriate representation of the time series, where P  is the period of the 
longer periodical component measured in the sampling rate, i.e. 12 P  months for (1i) and 

760,8 P  hours in (1ii). It is obvious that in the latter case the number of sub-components 
in the sum (2) is immense, exactly 4,380, and the estimation problem simply blows up 
because of the model dimension and the number of parameters involved. Therefore, 
component At  has to be necessarily removed from the model due to technical problems, but 
still it is essential for obtaining sensible mid-term forecasts. The solution to this problem is 
the topic of this paper and is presented and tested in the following sections. When At  is 
dropped off the equation (1ii) or (2) the longer period is the weekly one, that is 168 P  
hours, still high, but manageable with the estimation procedures in the frequency domain 
proposed below. 

At this point in time, UC and State Space (SS) models may be considered classical 
techniques, and therefore the main topics about state and parameter estimation will be 
briefly summarised here. Readers with more interest on these topics may consult Harvey 
(1989). 

In a standard State Space framework, equation (1) or (2) is considered as the observation 
equation which describes the stochastic evolution of state variables associated with the 
UC’s in (1). The SS description of the full UC model is obtained by assembling all the 
individual SS forms of all the components. Therefore, in order to formulate this overall SS 
form of the model, specific assumptions about the statistical nature of every component 
have to be made. The adequacy of these assumptions may be checked afterwards, by 
standard testing procedures. 

All the components in the models shown so far are basically trends and periodical 
components of different frequencies/periods. The SS representation of each of them used in 
this paper is the typical of the so called Basic Structural Model (BSM), Harvey (1989), and 
is given in equations (3) and (4). 
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Here the trend noise tw , *
tw  are random Gaussian noises, independent of each other with 

zero mean and certain variances 2
TV  and *2

TV , respectively; and the noises tkw ,  and *
,tkw  are 

independent random noises with common variance 2
kV  (but 22

jk VV z  for any jk z  with 
2/,,2,1, Pkj ! ). Another typical representation is the so called Dynamic Harmonic 

Regression (Young et al. (1999)). 

By selecting certain sum of subsets of the terms tkS , , meaningful components may be 
defined. A daily cycle for the hourly sampling rate data may be estimated by adding up the 
seasonal sub-components corresponding to the daily frequency and its harmonics, i.e. 
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tkt SD  for jk 7  and 12,,2,1 ! j . In a similar way, a weekly cycle may be found by 

summing up the weekly periodic term and all the harmonics not included in the daily cycle. 

Given the full SS system, formed by assembling equations (2), (3) and (4) it is well known 
that the Kalman Filter (KF) and the Fixed Interval Smoothing algorithms (FIS) provide the 
optimal estimation of the first and second order moments of the state vector in the sense of 
minimizing the Mean Squared Error. They also produce automatically a number of 
important operations in time series analysis, like interpolation of missing observations, 
forecasting, backasting (if necessary), etc. 

The application of the recursive KF and FIS algorithms requires the knowledge of all the 
system matrices, something that is not known in general. In the system above, the unknown 
parameters are all the noise variances, i.e. 2

TV ; *2
TV ; 2

kV  with 2,,2,1 Pk ! ; and 2V , the 
irregular/innovations variance. In many applications of single output UC systems the 
number of unknown parameters may be reduced by one, by normalizing all the variances by 
the innovations variance. In this way, Noise Variance Ratios (NVR) are usually defined as 

22 VVT ; 2*2 VVT ; 22 VV k  with 2,,2,1 Pk ! . When this change is done, the KF and FIS 
algorithms have to be updated accordingly. 

The estimation method usually preferred in the literature, due to its general good statistical 
properties is Maximum Likelihood (ML). However, it is well known that the likelihood 
surface is very flat or multimodal around the optimum when a big number of parameters 
have to be estimated, as it is reflected on the fact that the searching algorithms never 
converge to a clear optimum; they converge to different optima, depending on the initial 
conditions; or the standard errors of estimates are usual extremely high. 

The likelihood function in the frequency domain may be obtained by a formal translation of 
ML in time domain based on a Fourier transform which converts serial correlation into 
heteroscedasticity (Harvey, 1989). Fortunately, for time series with a marked periodic 
behaviour, the likelihood function defined in the frequency domain is much better defined 
than in time domain, even for high dimensional models. This will be the estimation method 
used later on. 

3. Multi-rate approach 
One important limitation of the previous models for data sampled at an hourly rate 

when mid or long-term forecasts are required is that they do not incorporate the obvious 
annual seasonal pattern (i.e. At  in equation (1ii)). It is generally acknowledged in many 
publications that avoiding this fact is unimportant for short-term forecasting (up to one 
week ahead). On the contrary, it is essential for longer forecasting horizons, and therefore it 
should be incorporated necessarily. 

There are many options to fit in that component into the model, but one option that 
is feasible and efficient is to forecast the time series at different sampling intervals and link 
both sort of forecasts by means of time aggregation techniques. The procedure consists of 
two broad steps that will be explained later in a more detailed algorithm: 

1. Find optimal forecasts for the next required months on the basis of monthly data and 
models that incorporate the annual seasonality explicitly.  

2. Build a model for the hourly data typical of short-term forecasting horizons and 
forecast the hourly time series for the next months with this model, but making sure 
that certain constraints are fulfilled. Such constraints are that the sum of the 
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forecasted hourly values for each month are exactly equal to the monthly forecasts 
found in the previous step. 

The main technical problem here is finding the forecasts in step 2. with the required 
constraints. However, this is relatively straightforward if the model in step 2. may be 
written in State Space form by means of time aggregation techniques, that in the SS 
framework are particularly natural, as described below. Indeed, provided an appropriate SS 
representation of the hourly series is found, the KF and FIS algorithms provide the forecast 
required. 

Let’s assume that the BSM model set up in the SS form given by equations (2), (3) and (4) 
is written in compact form as equation (5), where tx  is the general state vector, i.e. the 
trend, the periodic components and all the auxiliary states; ĭ , E  and H  are the system 
matrices, formed by block concatenation of the individual system matrices given in (2), (3) 
and (4). The appendix shows the full BSM model used in later examples according to this 
notation. 
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In order to set up model (5) in which the temporal aggregation is taken into account an 
explicit cumulator variable has to be defined, see Harvey (1989)). A first step is setting up 
the previous model including the observation equation into the state vector, i.e. 
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Beware that system (6) is exactly equivalent to (5). The second step is incorporating the 
cumulator variable to this model that will produce the required constraints. This is a 
variable defined as  
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The final model is then (7). 
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Model (7) has some peculiarities, (i) there is no observed noise, (ii) the first state replicates 
the observed data exactly; (iii) while system (6) is time invariant, in (7) there is one time 
varying system matrix due to the introduction of the cumulator variable; (iv) the first state 
of the system is the data for the estimation sample, but is an accumulated version of the 
output in the forecasting sample. 

The way the forecasts are produced in the State Space framework defined may be 
summarised in the following algorithm: 
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1. Find optimal monthly forecasts based on monthly observations and an optimal 
procedure. In later examples a monthly BSM will be used. 

2. Set up and estimate the unknown parameters in the frequency domain on a BSM 
model for hourly data with a weekly cycle, i.e. model (1ii) without the annual cycle 

tA  (see the appendix). 

3. Form a new time series by appending two sub-series. The first part is simply the 
actual hourly data in the estimation sample. The second part is the monthly forecasts 
from model in step 1. allocated in the appropriate hourly sampling scale, with 
missing observations in the middle.  

4. Run the Kalman Filter and Fixed Interval Smoothing on the time series formed in 
step 3. with system (7) and the parameter estimates from step 2.  

5. Since the first state is the accumulated output of the system in the forecast period, 
the final forecasts ought to be built by performing the reverse operation to 
accumulation done by the SS model. This amounts to make a first difference of the 
first state in the forecasting sample, for most hours, with the exception of those 
hours where 0 tC . 

The role of the cumulator variable tC  in system (7) is the key point in this procedure. Since 
the first state of the system is the output (i.e. the data), whenever this variable takes a value 
of one the first state is accumulating the values of the output measured at that hour and all 
the previous hours. Such accumulation is broken or re-started as soon as its value becomes 
zero. Then, given the distribution of zeros for tC  (the first hour of each month in the 
forecast period) the Fixed Interval Smoothing algorithm will produce a forecast value for 
the end of each month that is exactly the value of the output the algorithm finds at that point 
in time. But those values have been previously set as the values of the monthly forecasts 
from the monthly model. In this way the monthly constraints are preserved. 

It is important to note that the procedure is very general, thanks to the State Space 
formulation. The only restriction is that the model for the data in the shorter sampling 
interval should be written in State Space form, the rest of the method applies automatically. 
This means that it could be applied to any other combination of sampling intervals and that 
models in either timing may be of any kind preferred by each analyst. In particular, models 
in the coarser sampling interval may be non linear, incorporate inputs, add on any kind of 
judgment, etc. While the model in the finer sampling interval could be either of the kind 
used in this paper or ARIMA, Exponential Smoothing, etc. 

There are at least two factors that make the problem especially difficult in technical terms, 
as it is presented in this paper. Firstly, the dimension of the hourly BSM model, since we 
need explicitly the estimation of much more parameters than in standard applications of this 
model. This fact motivated the estimation by ML in the frequency domain. Secondly, the 
specific properties of system (7), mainly that one system matrix is time varying. The result 
of both facts is that there is no commercial software available in the market to solve the 
problem and this motivated the development of our own software, written in MATLABTM. 

4. Empirical results 
The data used to illustrate the method proposed in the previous sections are the recent 
hourly electricity load data registered on a transformer of an important electrical company 
in the UK (37,753 observations), see Figure 1.  
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Two are the main issues addressed in this paper. Firstly, how big is the hourly forecast 
improvement by using a model that includes the annual cycle with respect to standard 
alternatives typical of short-term forecast applications. Secondly, we look for the forecast 
horizon from which the improvements start to be important. 

In order to find the evidence, a forecasting experiment was set up. The experiment consists 
of the application of the algorithm in a rolling manner along a full year of data. The forecast 
horizon was fixed to 2,016 hours ahead (12 weeks, about three months), but longer 
forecasting horizons could be used. Once a forecast is done, the forecast origin is moved 
one day ahead, until completing 365 sets of three months ahead forecasts. The estimation of 
the models is updated every day. Additionally and for forecasting comparison purposes, a 
model set up for hourly data typical of short term forecasting (without the annual cycle) was 
estimated in the same way as the proposed algorithm. 
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Figure 1. Hourly load demand for two years registered at a transformer of a UK company 

The prediction error measure chosen for this work was the well known Mean Absolute 
Percentage Error (MAPE), given in equation (8), where itz �ˆ  stands for the forecasting 
values at time it � ; itz �  are the actual load demand values; and n  takes values from 1 to 
2,016 hours. 
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Figure 2 presents the forecasting performance of the algorithm (UC1 from now on), 
compared to the simpler alternative, typical of short term contexts (UC). In order to carry 
out this comparison, robust statistical measures to atypical observations like the median and 
mad (i.e. the median absolute deviation with respect to the median) were used. Each line in 
the figure represents the median of the MAPE for the whole set of 365 forecast errors from 
1 to 2,016 hours ahead obtained along the year. Vertical dotted lines indicate the beginning 
of each week. In a similar format, Figure 3 also shows the mad. 

Several conclusions may be extracted from all this information. Firstly, there is a rapid 
increase in the error measurements in all models for very short forecasting horizons, but the 
increments are reduced considerable after half a week for the UC1 model, while UC still 
grows at a high rate. Secondly, it is verified that the inclusion of the annual cycle in the 



 

1876 
 

model is very important, because the error is reduced to almost a half for a three month 
forecast regarding the median and more than a half, looking at the mad. In other words, 
forecasts are both more accurate and their dispersion is much lower. Thirdly, the 
improvement consistently increases with the forecasting horizon. Finally, including the 
annual cycle starts to produce consistent improvements for horizons of one week or longer. 
Certainly, for horizons up to one day ahead forecasts, typical of short term applications the 
inclusion of the annual cycle does not produce any problem, but is not worthy in forecasting 
terms 
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Figure 2. Median of MAPE of the 365 sets of 12 week ahead forecast errors for the two models considered. 
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Figure 3. MAD of MAPE of the 365 sets of 12 week ahead forecast errors for the two models considered. 

5. Conclusions 
This paper proposes a multi-rate general method for long-term forecasting electricity load 
demand for rapidly sampled data. The rapid sampling interval of the original data and the 
forecasting horizon make the problem especially difficult, since the obvious annual 
seasonality cannot be avoided, as it is usually done in short-term forecasting studies 
(normally up to one day ahead). 
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The approach consists of a two step efficient procedure in which a monthly forecast is 
produced on the basis of monthly data and such forecasts are fixed as constraints for an 
hourly model estimated on hourly data. The monthly model incorporates the required 
annual seasonality by an appropriate model. The rest, i.e. the more detailed information 
typical of rapid sampled data, is produced by the hourly model. Imposing the constraints by 
the forecasts in the first step is natural to implement by means of a standard State Space 
framework. The method is very general in the sense that any type of model could be used in 
both steps, allowing the analysts to incorporate their own experience with particular time 
series or models. The only restriction for the method to work is that the hourly model 
should be written in State Space form. Unobserved Component Models have been used in 
this paper in both stages. 

The procedure is evaluated by a thorough forecasting experiment in which 365 sets of one 
hour up to twelve weeks ahead of hourly forecasts are produced for the load demand 
registered at a transformer of a UK company. The method is compared with the model in 
the second step, in which the annual seasonality is not incorporated. The conclusions from 
the experiment are very clear: 

� Modelling the annual seasonality reduces the forecast error to a half in the horizon of 
three months ahead, both measured as the median or the mad of the Mean Absolute 
Percentage Error. 

� Forecasting advantages of the method start to be important for horizons of one week 
ahead and longer. 
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